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Abstract

We describe an iterative algorithm to solve electronic structure problems in Density
Functional Theory. The approach is presented as a Subspace Accelerated Inexact
Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a
class of iterative algorithms known as RMM-DIIS in the electronic structure com-
munity. The method is illustrated with examples of real applications using a finite
difference discretization and multigrid preconditioning.
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1 Introduction

Fast iterative solvers for the Kohn-Sham (KS) equations are crucial to enable
large-scale first-principles simulations. It is particularly important for Born-
Oppenheimer molecular dynamics simulations where the electronic ground
state needs to be calculated numerous times with a relatively high accuracy.
Numerous algorithms have been proposed in the physics and chemistry lit-
erature. All have their strengths and weaknesses. There is probably not one
algorithm that would win in all situation, but more likely a list of good algo-
rithms to be applied preferably according to the context: numerical basis set,
code implementation and parallelization, type of application. This paper fo-
cuses on iterative algorithms for KS equations discretized on a real-space mesh
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by Finite Differences (FD) or Finite Elements (FE), or other general numer-
ical method such as pseudo-spectral — usually referred to as Plane Waves
(PW) in the electronic structure community. Atomic potentials are replaced
by smoother functions using non-local pseudopotential approximations which
also include the core electrons not directly involved in chemical bonds. From a
mathematical point of view, such discretizations result in large sparse matri-
ces, and lead to the use of matrix-free implementations of nonlinear iterative
solvers.

The aim of this paper is to describe and analyze an iterative algorithm first
introduced in the context of linear scaling methods with FD discretization
[7], and later used in the context of a finite elements discretization[8]. The
algorithm is presented from the point of view of a Subspace Accelerated Inex-
act Newton (SAIN) method, inspired by Fokkema et al [10]. Inexact Newton
iterations make use of a geometric multigrid preconditioner for real-space dis-
cretization. The acceleration scheme introduced by Anderson [1] is used to
accelerate convergence of the Newton iteration.

During the analysis, it became clear that this algorithm is closely related
to the RMM-DIIS method as described in [14]. One major difference is the
block or all-bands approach used here: all the electronic wave functions are
updated simultaneously, using a single extrapolation step. The possibility of
formulating DIIS as an accelerated inexact Newton scheme was pointed out
by Harrison in Ref. [11].

A short review of extrapolation schemes in electronic structure calculations is
given in Section 2. In Section 3, notations and formulation of the Kohn-Sham
(KS) equations are introduced. Then the inexact Newton iteration method is
described in section 4 before applying it to the KS equations in Section 5.
More details and practical implementation of the algorithms are presented in
Section 6. The numerical examples used to illustrate the algorithm in Section
7 show that the algorithm can be applied very efficiently to solve for large
scale problems requiring the computations of over a thousand eigenvalues.

2 Extrapolation schemes in electronic structure calculations

The idea of using an extrapolation scheme to accelerate convergence of a
Newton iteration in electronic structure calculations goes back to Pulay [18]
in 1980. He gave the name DIIS for Direct Inversion of the Iterative Subspace
to his approach. Related algorithms are also found under the name ”Pulay
mixing”. While Pulay described his original approach for extrapolating a Fock
matrix based solution of a self-consistent calculation — represented in a space
spanned by a set of local atomic orbitals — the name DIIS was later used in
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the community for various extrapolation based algorithms.

In this paper, the focus is on using a similar extrapolation scheme to calculate
directly the wave functions solutions of the Kohn-Sham (KS) equations. For
this purpose, Wood and Zunger [21] described an algorithm they call ”RMM-
DIIS”, attributed to Bendt and Zunger. This algorithm uses the DIIS extrapo-
lation scheme to minimize the residual of an eigenvalue problem associated to
a targeted eigenpair. Alternative implementations for DFT calculations using
a Gaussian basis set [9] or Plane Waves [14] were proposed later. Hutter et
al. [12] proposed another adaptation of DIIS for optimizing the Kohn-Sham
eigenstates in plane waves using the extrapolation scheme to minimize the
preconditioned residuals.

DIIS extrapolation coefficients at step k of the iterative process are determined
by requiring that the 2-norm of an extrapolated error vector ēk, made of a
linear combination of the estimated current error ek and the estimated errors
at the previous m steps,

ēk =
m∑

i=0

ciek−i,

is minimized under the constraint

m∑

i=0

ci = 1. (1)

This leads to a system of m + 2 linear equations for the m + 1 coefficients ci

and the Lagrange parameter associated with the constraint.

A similar extrapolation scheme had been proposed earlier by D.G. Anderson
[1] for solving more general nonlinear equations. Anderson writes

ēk = ek +
m∑

1=1

θi(ek−i − ek).

The latter equation can also be written as

ēk = (1−
m∑

1=1

θi)ek +
m∑

1=1

θiek−i.

Thus, the equivalent DIIS coefficients are given by

ci = θi, i = 1, . . . , m

c0 = 1−
m∑

1=1

θi

and clearly satisfy the constraint (1).
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The particular choice of the error function varies depending on the specific
quantity one tries to minimizes: residual of eigenvalue problem, computed iter-
ative correction, electronic density self-consistent updates, even atomic forces
in geometry optimizations.

Extrapolation written under the ”Anderson” form was also used in the elec-
tronic structure community, for instance to accelerate self-consistent itera-
tions by extrapolating potentials obtained at successive iterations[15]. Similar
schemes to mix the density between self-consistent iterations are also common
under the name ”Pulay mixing”. The Anderson extrapolation scheme was re-
cently used by the author and others [7,8] to optimize subspaces associated to
DFT orbitals represented in a general nonorthogonal representations.

3 Density Functional Theory

We consider the DFT energy functional written as a functional of N orthonor-
mal electronic wave functions ψi (KS model)

EKS[{ψi}N
i=1] =

N∑

i=1

∫

Ω
ψi(r) (−4ψi) (r)dr

+
1

2

∫

Ω

∫

Ω

ρ(r1)ρ(r2)

|r1 − r2| dr1dr2 + EXC [ρ] (2)

+
N∑

i=1

∫

Ω
ψi(r)(Vextψi)(r)dr.

where ρ is the electronic density defined by

ρ(r) =
N∑

i=1

|ψi(r)|2 (3)

(see for example [3]). EKS is made of the sum of the kinetic energy of the
electrons, the Coulomb interaction between electrons, the exchange and cor-
relation electronic energy, and the energy of interaction of the electrons with
the potential generated by all the atomic cores Vext. Given an external po-
tential Vext — defined by the various atomic species present in the problem,
their respective positions and pseudopotentials — the ground state of the
physical system is obtained by minimizing the energy functional (2) under the
orthonormality constraints

∫

Ω
ψi(r)ψj(r) = δij, i, j = 1, . . . , N. (4)
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To avoid mathematical difficulties irrelevant to the present study, let assume
from here on that we have to solve a problem in a finite dimensional space
of dimension M resulting from the discretization of the above equations. To
be concrete, suppose we have a finite difference discretization on a uniform
mesh with periodic boundary conditions, and thus the functions ψi are M-
dimensional vectors with components corresponding to their values at the
mesh points, ψi,k = ψi(rk). Let denote by Lh the finite difference approxima-
tion of the Laplacian operator.

One can derive the Euler-Lagrange equations associated to the minimization
problem (2) with N2 Lagrange parameters corresponding to the orthonormal-
ity constraints (4). One obtains the so-called Kohn-Sham equations in their
usual form for the particular choice of the functions {ψi}N

i=1 which diagonalizes
the matrix Λ made of the Lagrange parameters, Λij = λiδij

−Lhψi + VKS[ρ]ψi = λiψi

ρ(rk) =
N∑

i=1

|ψi(rk)|2 (5)

M∑

k=1

ψi(rk)ψj(rk) = δij

where VKS is a discretized nonlinear effective potential operator (see e.g. [3]).
In this approach, one has to find the N lowest eigenvalues λi, i = 1, . . . , N and
the corresponding eigenfunctions. We assume here that λN+1 − λN > 0.

Let V denote the set of matrices of M rows and N columns. We can represent
the solution of the discretized problem as a matrix

Ψ = (ψ1, . . . , ψN) ∈ V (6)

Ψ represents the invariant subspace spanned by the eigenvectors associate to
the N lowest eigenvalues. Using these notations, the KS equations are given
by

−LhΨ + VKS[ρ]Ψ = ΨΛ (7)

where Λ = diag(λ1, . . . , λN) is a diagonal matrix with diagonal entries Λii =
λi.

We define
Hh[ρ] = −Lh + VKS[ρ]. (8)

Let’s assume we have another representation of that same subspace by N
linearly independent vectors,

Φ = (φ1, . . . , φN) ∈ V (9)
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One can find an N ×N matrix C such that

Ψ = ΦC. (10)

The matrix C satisfies

CCT = S−1 (11)

where S = ΦT Φ, the Gram matrix, is of rank N . Using relations (10) and
(11), one can express the electronic density in terms of the matrix elements of
Φ and S−1,

ρk =
N∑

i,j=1

(
S−1

)
ij

ΦkiΦkj (12)

where ρk denotes the value of the electronic density at the mesh point xk. Also
the KS equations for Φ can be rewritten as

−LhΦ + VKS[ρ]Φ = ΦS−1HΦ (13)

where HΦ = ΦT (−Lh + VKS)Φ. For a trial solution Φ, the residual is given by

R(Φ) = −LhΦ + VKS[ρ]Φ− ΦS−1HΦ (14)

It is easy to verify that

ΦT R(Φ) = 0.

Beside the fact that one has to be careful in avoiding cases where the columns
of Φ become degenerate, this is now an unconstraint nonlinear problem. Such
a formulation is convenient to implement acceleration algorithms like the one
described later in this paper. It has also been used for conjugate gradient
algorithm implementation in electronic structure calculations [20].

We define the following dot product between 2 elements of V as

(Φ1, Φ2)V = Tr(CT
1 ΦT

1 Φ2C2) = Tr(C2C
T
1 ΦT

1 Φ2) (15)

where Ci is a linear transformation that maps Φi into a matrix made of or-
thonormal vectors. It has the important property of being independent of the
particular representation Φ chosen for a given subspace. If Φ1 = Φ2 = Φ,

(Φ, Φ)V = Tr(S−1ΦT Φ) (16)

leading to the definition

(Φ1, Φ2)S := Tr(S−1ΦT
1 Φ2). (17)
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4 Inexact Newton

We consider the general nonlinear equation

F (u) = 0 (18)

where F is some smooth nonlinear functional defined in a finite dimensional
space V ∈ Rn, where n is typically very large. One type of such equations is

A(u) = λ(u)u (19)

with λ(u) = (u,Au)/(u, u), and A is a nonlinear operator. The nonlinearity
of A, which typically appears in Density Functional Theory, is one of the
particular features which leads to not rely on standard eigensolvers for an
efficient solution of this problem.

Newton’s method is a well known iterative approach to solve nonlinear equa-
tions such as (18) (see e.g. [17]). One basic iterative step to improve an ap-
proximate solution uk at step k can be written as

uk+1 = uk − J−1
k F (uk) (20)

where Jk := F ′(uk). Thus we can write a linear equation for the correction p
of uk,

Jkpk = −rk (21)

where rk = F (uk). Unfortunately, the Jacobian Jk is often not available or
practically impossible to compute. It can also be computationally very ex-
pensive or impossible to solve exactly the linear system (21). For large n, it
is more practical to use an approximate Jacobian J̃k, leading to an inexact
Newton iteration [5]

uk+1 = uk − J̃−1
k F (uk) (22)

The inexact correction equation can then also be solved approximately, by
an iterative method such as multigrid for example. Note that even if Eq.
(21) is solvable, searching for an accurate solution may not be efficient if the
quadratic model used to derive the Newton equation differ significantly from
the real behavior of F (u).

If we are in a quadratic regime close to a solution ū, where

rk = Jk(uk − ū),

we have, using (22),

uk+1 = ū + (I − J̃−1
k Jk)(uk − ū) (23)

This simple iterative process converges if the eigenvalues of the matrix (I −
J̃−1

k Jk) are of modulus smaller than 1. The convergence rate obviously depends
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on the largest eigenvalues of (I−J̃−1
k Jk) and thus on how well J̃k approximates

Jk. Note that for an eigenvector search, since the solution is defined up to
multiplicative factor, one should really consider the operator [19]

(I − uku
T
k )(1− J̃−1

k Jk)(I − uku
T
k ).

5 Accelerated Inexact Newton for KS

The nonlinear KS problem to solve for can be written as

F (u) = R(Φ) = −LhΦ + VKS[ρ]Φ− ΦS−1HΦ = 0 (24)

and the corresponding inexact Newton iteration

Φk+1 = Φk − J̃−1
k R(Φk). (25)

Let
Pk = −J̃−1

k R(Φk), (26)

denote the subspace correction computed at step k.

The simplest approximate Jacobian J̃k one could use is the identity scale by
a factor

J̃k = ηI.

In the language of eigensolvers, it leads to a block shifted power method (see
e.g.[2], section 11.3). It is also called gradient method for computing the small-
est eigenvalue since R is colinear to the gradient of the Rayleigh quotient. Such
an approach can be substantially improved if a good preconditioner T is avail-
able by choosing

J̃k = T.

Iteration (25) then becomes a subspace preconditioned inverse iteration. For a
linear positive definite operator A, Neymeyr [16] demonstrated its convergence
to the invariant subspace spanned by the eigenvectors associated to the lowest
N eigenvalues of A. The main assumptions are that λN+1 > λN and T is a
good approximation of A in the sense that

‖I − TA‖A ≤ γ

for γ ∈ (0, 1). In practice, due to numerical rounding errors, this iteration con-
verges for initial subspaces generated from scratch. For an appropriate choice
of the preconditioner, this algorithm leads to a mesh independent convergence
rate with a very small cost iteration. For KS equations discretized on a mesh or
in Plane Waves, a good option is to use a preconditioner T which approximates
(−Lh)

−1. Here we use the multigrid preconditioner proposed in [6].
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Newton’s method is a one-step method which uses information only from the
current step to improve a trial solution. To accelerate convergence however,
one can use information accumulated during the previous m steps, to build
an improved trial solution. Such an approach is referred to as an Accelerated
Inexact Newton (AIN) method [10]. Instead of simply adding the correction Pk

to the current approximation Φk, the idea is to use the knowledge accumulated
during the m previous Newton steps to build a better update. Let

Vk,m := [Φk−m, Pk−m, . . . , Φk, Pk] (27)

be a search space. An improved update for Φk would be

Φ̄k = Vk,my (28)

where y ∈ R(2m+2)N is solution of a projected problem in Vk,m.

Fokkema et al. [10] proposed various conditions (projected problems in appro-
priately chosen search subspace) to determine the vector of coefficients y: a
Galerkin condition, a minimum residual condition, or a mix of both. In the
Davidson-Liu algorithm [4] for instance, one would solve a Galerkin problem
in the space

Vk,DL = [Φk, Pk].

In LOBPCG [13], one would solve instead a Galerkin problem in the space

Vk,LOBPCG = [Φk−1, Φk, Pk]

to get the optimal solution within this subspace. However an optimal algorithm
has to take into account some of the features specific to DFT calculations:
a nonlinear operator and a large number of eigenpairs to compute. Yang et
al.[22] proposed to generalize LOBPCG and solve iteratively a nonlinear 3N×
3N problem in Vk,LOBPCG. This is a very robust approach. However building
multiple times 3N×3N matrices, with elements made of dot products between
pairs of M-dimensional vectors, becomes quite costly for large scale problems.

Here we use a much less computationally demanding method based on min-
imizing an extrapolated residual. In Ref. [1], Anderson proposed an extrap-
olation based on the solution of a projected linear problem defined by the
residuals computed at the m previous steps. It can be regarded as a linearized
minimum residual condition

miny∈<m+1,‖y‖=1‖
m∑

j=0

yjR(Φk−j)‖,

a block variant of RMM-DIIS. The basic idea is to write an extrapolation
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scheme for Φ, using the approximations at the previous m steps,

Φ̄k := Φk +
m∑

j=1

θj(Φk−j − Φk). (29)

Assuming a quadratic regime, the same extrapolation scheme holds for R, and
thus for P ,

P̄k := Pk +
m∑

j=1

θj(Pk−j − Pk). (30)

The real coefficients θj are defined as those which minimize the norm of P̄k.
They can be found by solving the m×m linear system defined by

m∑

j=1

(Pk − Pk−i, Pk − Pk−j)Sθj = (Pk − Pk−i, Pk)S, (31)

i = 1, . . . ,m.

Finally, the new trial solution in Vk,m is computed as

Φk+1 = Φ̄k + βP̄k.

where the parameter β is usually chosen to be 1.

Note that the equations for the coefficients θj are very similar to those obtained
by Harrison [11] for his Krylov Subspace accelerated inexact Newton (KAIN)
method. They differ by the choice of the left projector used to define the
projected system (31).

6 Practical Implementation

The evaluation of the dot product (., .)S defined in (17) becomes quite expen-
sive for large N since it involves N2 dot products between vectors of length
M . In practice the approximation

Tr(P̄ T P̄S−1) ∼
N∑

i=1

P̄ T
i P̄i(S

−1)ii.

is used. It requires only O(N) dots products. (Here P̄i denotes the column i of
P̄ .) This approximation becomes exact for orthogonal vectors. If vectors are
orthogonalized at regular intervals, for instance once at every ionic positions
update in a molecular dynamics, this approximation remains very good.

Since the SAIN algorithm makes use of a residual minimization for an eigen-
value problem, there is a risk to converge to interior eigenvalues since the
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residual of an eigenvalue problem is zero for any eigenpair. To remedy this
issue, extrapolation is turned off if the trial solution is too far away from con-
vergence. This reduces SAIN to a subspace preconditioned inverse iteration in
the initial steps when no good trial solution is known.

Another common issue observed in electronic structure problems solving with
SAIN is the local non-convexity of the energy surface. In that case minimizing
the residual would lead towards an energy maximum. Such a problem can be
detected by looking at the extrapolation coefficients θj. Let us consider for
example the case m = 1 and assume the energy functional follows a quadratic
function between Φk−1 and Φk, with E[Φk] < E[Φk−1]. Then a proper extrap-
olation with a convex energy functional should lead to θ < 0.5. This suggests
one should discard coefficients larger than 0.5. For coefficients larger than 1,
we actually assume local concavity and use an extrapolation with θ = −0.5.
We also treat with precautions coefficients smaller than −3 corresponding to
very large extrapolation.

The complete procedure is detailed in Algorithm 1. One notices in particular
that SAIN can be implemented with only one full Hamiltonian matrix appli-
cation per Newton iteration and per wave function. Other costly operations
for large systems include building the matrices S and HΦ, and potentially
applying the preconditioner T .

7 Numerical results

As a first illustration, let us consider a simple eigenvalue problem

Au = λu

where A is a real symmetric M × M matrix. Without loss of generality, we
can assume A diagonal. Suppose the diagonal elements of A are given by
aii = λi = i for i = 0, . . . , M − 1. Let us consider the problem of finding the
lowest eigenvalue λ0 = 0 and the associated eigenvector u0 = (1, 0, . . . , 0)T .
We start with an initial guess given by ũ0 = (0.447, 0.894, 0., . . . , 0)T , that is
with non-zero components along the eigenvectors corresponding to the lowest
2 eigenvalues.

Let M = 10 and set m = 1, T = 1/λmax ·I where λmax is the largest eigenvalue
of A. For this simple problem the energy is the sum of the Ritz value associated
with the current iterative solution ũ. It is also a measure of the error during
the SAIN iterations. We plot it as a function of the angle between ũ and u1 —
in the plane defined by u0 and u1. The solution is reached for an angle of π/2.
Results are plotted in Fig. 1 and show how the initial iterations are not very
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Algorithm 1 Subspace Accelerated Inexact Newton (SAIN)

k ⇐ 0, m̃ ⇐ 0, V−1 ⇐ [ ]
Set Φ0 to initial guess
Compute S = ΦT

0 Φ0, ρ0, V [ρ0] and HΦ = ΦT
0 H0Φ0

R0 ⇐ HkΦ0 − Φ0S
−1HΦ

repeat
Pk ⇐ −TRk

Vk ⇐ [Vk−1, Φk, Pk]
flag ⇐ true
while flag and m̃ > 0 do

flag ⇐ false
if dim(span(Vk)) > 2(m̃ + 1)N then

remove left 2N columns of Vk

end if
Build linear system (31)
if cond(linear system) < 100 then

Solve linear system (31) to determine θj, j = 1, . . . , m̃
if maxj(θj) > 0.5 or minj(θj) < −3 then

if m̃ > 1 then
m̃ ⇐ m̃− 1, flag ⇐ true {Reduce history length}

else
if θ1 > 1 then

θ1 ⇐ −0.5 {Fixed extrapolation for concave regime}
end if
θ1 ⇐ min(max(θ1,−3), 0.) {Limit extrapolation}

end if
end if

else
m̃ ⇐ m̃− 1, flag ⇐ true {Reduce history length}

end if
end while
y ∈ R2(m̃+1)N

for i = 1 to N do
y(i) = 1−∑m̃

j=1 θj, y(i + N) = βy(i)
end for
for j = 1 to m̃ do

for i = 2jN + 1 to 2jN + N do
y(i) = θj, y(i + N) = βy(i)

end for
end for
Φk+1 ⇐ Vky
k ⇐ k + 1
Update S = ΦT

k Φk, ρk, V [ρk] and HΦ = ΦT
k HkΦk

Rk ⇐ HkΦk − ΦkS
−1HΦ

until ‖Rk‖ < tol
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Fig. 1. Convergence of SAIN algorithm for search of lowest eigenvalue of of ma-
trix A (see text). Arrows denote magnitude of gradient at each trial solution. No
acceleration is performed until the convex region is reached.
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Fig. 2. Convergence of energy and residual for Si35H36 cluster for various history
length (m).

efficient since the preconditioner is not very good and the trial solution is in
a concave regime. But as soon as the convex regime is reached, acceleration
quickly leads to the solution.

Now switching to real application, the next test consists in calculating the
ground state of a silicon cluster passivated with H atoms at the surface
(Si35H36). Like al the other applications presented in this paper, the Local
Density Approximation (LDA) exchange and correlation functional was used
together with norm-conserving pseudopotentials. The convergence rate for the
total energy and the residual defined by Eq. (24) is shown in Fig. 2 using SAIN
with various history lengths m. The case m = 0 corresponds to a subspace
preconditioned inverse iteration with no acceleration. The initial trial wave
functions used here are Gaussians functions centered on atomic bonds. The
numerical results show that the effect of acceleration is quite important for
m = 1 and m = 2. Going beyond m = 2 does not help much.
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Fig. 3. Convergence for Si512 crystal (N=1024).

To illustrate the applicability of the algorithm described in this paper to really
large problems, we consider the calculation of the electronic structure of a
silicon crystal of 512 atoms. In a typical pseudopotential DFT calculation
for this system, one has to compute 1024 wave functions. The problem is
discretized on a uniform 64×64×64 mesh. Wave functions were initialized as
Gaussian functions centered on bonds. Convergence of SAIN is shown in Fig.
3.

Problems involving dangling bonds are typically more difficult to solve than
the two previous examples — with fully saturated bonds — and iterative
algorithms usually converge slower towards the ground state. To illustrate the
efficiency of the SAIN algorithm on such problems, it is applied to the ground
state calculation of a diamond C(100) surface. A slab made of 12 layers of
C atoms was used, with one surface terminated by a layer of H atoms to
passivate the dangling bonds and the other surface reconstructed, as proposed
for instance in [23]. The unit cell was repeated 4 times along each of the 2 axis
parallel to the surface, making it a 416 atoms system, with 784 electronic wave
functions to compute. Fig. 4 shows the convergence of the SAIN algorithm for
a 2×1 reconstructed surface. Compared to the two previous examples, a slower
but quite good convergence rate is observed.

In practical applications, the electronic structure ground state often needs to
be computed many times for slightly different atomic configurations. This is
the case for molecular dynamics (MD) simulations or geometry optimizations
where the electronic structure is used to evaluate forces acting on atoms at each
step of the atomic configuration trajectory. In that case the initial trial wave
functions are provided by the solution computed at the previous step or an
extrapolation using a few additional previous steps. The problem then becomes
to quickly reach the new ground state for a slightly different Hamiltonian. The
performance of SAIN in this situation is illustrated in Fig. 5. It shows the
convergence of the residual for 5 consecutive steps of molecular dynamics of
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Fig. 4. SAIN Convergence for reconstructed (100) diamond surface (N=784).

0 20 40 60 80
nb. Newton steps

10
-4

10
-3

10
-2

10
-1

10
0

|| 
R

es
id

ua
l |

|

Fig. 5. SAIN convergence for H2O molecular dynamics with 64 molecules (N=256).

liquid water at ambient conditions (64 molecules cell). At each MD step, wave
functions are initialized with an initial guess given by

Φ̃k = 2Φk−1 − Φk−2.

For the iterations shown in Fig. 5, m = 1 and Anderson extrapolation is per-
formed at every step except for the first step after updating atomic positions.
The jumps in residual correspond to atomic configurations updates.

8 Concluding Remarks

As seen from the numerical results presented in the previous section, small
values of m are usually appropriate for the SAIN algorithm. The optimal
value for m depends on the preconditioner T , but m = 1 or m = 2 are often
good values. Using larger values often results in bad conditioning for the linear
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system (31) and m being cut automatically (see Algorithm 1).

A major assumption for the SAIN algorithm to work well is to have a band
gap in the eigenvalues spectrum, λN < λN+1. If λN is degenerate or nearly
degenerate, extrapolation is not valid anymore for residuals corresponding to
Ritz vectors associated to the eigenvalues close to λN . One way to remedy this
issue is to replace S−1 by the single particle density matrix in the definition
of the dot product (., .)S (Eq. 17) in order to progressively decrease the weigh
of the contributions coming from those Ritz vectors. Further study is needed
for this problem.

As mentioned in the introduction, an interesting aspect of the algorithm pre-
sented here is its direct applicability in the linear scaling context, when elec-
tronic wave functions are confined to limited regions in space[7]. It is in partic-
ular due to the fact that no Rayleigh-Ritz procedure is required in SAIN. For
localized electronic wave functions, the only adaptation needed is to replace
the orthonormalization procedure by a simple normalization of all the wave
functions.
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